

MINISTERIO DE DESARROLLO RURAL Y TIERRAS OBSERVATORIO AGROAMBIENTAL Y PRODUCTIVO - OAP

Guía Institucional

Metodología para la elaboración de mapas de superficie de cultivos priorizados, a través de análisis geoespacial multicriterio

> Unidad: Informática y Soporte Tecnológico. Elaborado por: Ing. Mauricio Rodriguez Caspa. Ing. Susana Gutiérrez Villalobos.

JULIO - 2017 LA PAZ - BOLIVIA

CONTENIDO TEMATICO

I. INTRODUCCION	1
II. JUSTIFICACIÓN	1
III. OBJETIVOS	2
3.1. Objetivo General	2
3.2. Objetivos Específicos	2
IV. METODOLOGIA DE TRABAJO	3
4.1. Variable Uno	4
Procesamiento de Imágenes Satelitales	4
- DATOS DE ENTRADA	4
1.1. Imagen satelital	4
1.2. Puntos GPS en campo	4
PROCESO	5
2.1. Descarga de Imágenes	5
2.2. Pre procesamiento de la Imagen	5
2.2.1. Radiometría	5
2.2.2. Atmosférica	5
2.2.3. Geométrica	6
2.3. Geo procesamiento	6
2.3.1. Análisis de Componentes Principales (ACP)	6
2.3.2. Índice diferencial de vegetación normalizado (NDVI)	6
2.3.4 Clasificación no supervisada	8
2.3.3. Clasificación Supervisada	8
2.3.5 Algebra de Mapas	9
DATOS DE SALIDA	9
5.2. Variable Dos	9
Temperatura	9
1.1. Información de la normal de temperatura promedio °C	10
1.2. Ficha técnica del cultivo	10
2.1. Generación de shapefile de puntos	10
2.2. Análisis geoespacial (Kriging Lineal)	11
2.3. Análisis de reclasificación de temperaturas	12
DATOS DE SALIDA	12
4.3. Variable Tres	12

Altitud	12
DATOS DE ENTRADA	13
1.1. Curvas de nivel de la zona de estudio	13
1.2. Ficha técnica del cultivo. –	13
PROCESO	13
2.1. Generación de una Red Irregular de Triángulos (TIN)	13
2.2. Generación del Modelo Digital de Elevaciones (DEM)	14
2.3. Análisis de reclasificación altitudinal	14
DATOS DE SALIDA	14
4.4. Variable Cuatro	14
Pendiente	14
DATOS DE ENTRADA	15
1.1. Modelo Digital de Elevaciones (DEM)	15
1.2. Ficha Técnica de cultivo	15
PROCESO	15
2.1. Generación de capa temática de pendiente	15
2.3. Análisis de reclasificación de pendientes	16
DATOS DE SALIDA	16
4.5. Variable Cinco	16
Suelo	16
DATOS DE ENTRADA	17
1.1. Planes de Uso de Suelos (PLUS)	17
1.2. Ficha Técnica de cultivo	17
PROCESO	17
2.1. Generación de capa temática de suelo	17
2.2. Análisis de reclasificación del suelo	17
DATO DE SALIDA	17
4.6. Variable seis	17
DATOS DE ENTRADA	18
1.1. Capa temática de suelos	18
1.2. Boleta de Monitoreo de Campo	18
PROCESO	18
2.1 Cálculo de superficie en Ha	18
2.4. Selección de superficie de interés y reclasificación de la capa temática	19
DATOS DE SALIDA	19

V. CONCLUSIONES	20
VI. RECOMENDACIONES	20
VII. BIBLIOGRAFIA	21

CONTENIDO DE CUADROS

Cuadro 1. Flujograma general para el monitoreo de cultivos estratégicos	1
Cuadro 2. Flujograma de metodología actual de identificación de superficies de cultivo	2
Cuadro 3. Variables para la estimación de superficie de cultivo	3
Cuadro 4. Flujograma de la variable de procesamiento de imágenes satelitales	4
Cuadro 5. Proceso de Componente Principales	6
Cuadro 6. Proceso de Índice diferencial de vegetación normalizado	7
Cuadro 7. Proceso de Clasificación no Supervisada	8
Cuadro 8. Proceso de Clasificación Supervisada	8
Cuadro 9. Proceso de Clasificación Supervisada	9
Cuadro 10. Proceso de Clasificación No supervisada	9
Cuadro 11. Flujograma de la variable de temperatura	10
Cuadro 12. Proceso de generación de shapefile de puntos	11
Cuadro 13. Proceso de Análisis geoespacial (kriging lineal)	11
Cuadro 14. Proceso de Análisis de reclasificación de temperaturas.	12
Cuadro 15 Flujograma de la variable de Altitud	13
Cuadro 16. Proceso de generación de TIN	13
Cuadro 17. Proceso de generación del DEM	14
Cuadro 18. Proceso de Análisis de reclasificación altitudinal	14
Cuadro 19. Flujograma de la variable de Pendiente	15
Cuadro 20. Proceso de generación de capa temática de pendientes	15
Cuadro 21. Proceso de Análisis de reclasificación de pendientes	16
Cuadro 22. Flujograma de la variable de suelo	16
Cuadro 23. Proceso de Análisis de reclasificación de suelos.	17
Cuadro 24. Flujograma de la variable de tamaño de parcela	18
Cuadro 25. Proceso de Análisis de reclasificación	18
Cuadro 26. Proceso de Análisis de reclasificación.	19
Cuadro 27. Proceso de Análisis de reclasificación.	19

I. INTRODUCCION

Ministerio de Desarrollo Rural y Tierras (MDRyT), en el marco de las estrategias de transformaciones estructurales diseñadas y sus competencias específicas, viene desarrollando una serie de acciones que consoliden el Desarrollo Rural Integral Sustentable y la Revolución Productiva Comunitaria Agropecuaria, con énfasis en la seguridad alimentaria con soberanía, imperativo consagrado en la Constitución Política del Estado Plurinacional y que se plasma en la Ley 144 de 27 de junio de 2011, donde se determinan políticas de Estado, así como la creación de entidades públicas y fortalecimiento institucional para la concreción de tales políticas y planes esgrimidos en la indicada ley.

Es así que el Observatorio Agroambiental y Productivo (OAP), unidad técnica del MDRyT, tiene como misión institucional el de generar, analizar monitorear y difundir información especializada del sector agropecuario, con la finalidad de que el Estado tome decisiones que garanticen la seguridad y soberanía alimentaria. Por ello la OAP mediante su unidad de informática y soporte tecnológico pretende generar información geoespacial que contribuya a los objetivos de la entidad, para ello la entidad a través de su equipo técnico tiene la tarea de desarrollar ciertas metodologías que ayuden al logro de los objetivos en la aplicabilidad de los sistemas de información con relación al monitoreo de cultivos, de esa manera hacer más eficiente el trabajo que se va realizando.

II. JUSTIFICACIÓN

Según Resolución Ministerial que atribuye funciones al Observatorio Agroambiental y Productivo (OAP) a través del Decreto Supremo No. 29894, menciona en el Artículo 3. Punto 5. *"Monitorear los cultivos estratégicos y las áreas en producción agropecuaria".* Para cumplir con esta finalidad la OAP debe inicialmente identificar las superficies de cultivo, para luego realizar el monitoreo del comportamiento agrícola-productivo, a través de instrumentos o herramientas que permitan tener una visión completa de la producción agrícola a nivel local, regional y/o Departamental, a continuación, se muestra un flujograma general para el monitoreo de cultivos.

Cuadro 1. Flujograma general para el monitoreo de cultivos estratégicos

Fuente: Elaboración Propia.

Realizando un análisis interno de la metodología que se utiliza para la identificación de parcelas de cultivos se verifica análisis de geoprocesamiento de imágenes con información de puntos GPS levantados en campo, el proceso es el siguiente:

Cuadro 2. Flujograma de metodología actual de identificación de superficies de cultivo

El resultado de este análisis no contempla variables como: altitud, pendiente del terreno, temperatura, tipo de suelo. Por ello las superficies de terreno que se generan como resultado final son sobreestimadas ya que solo se toma en cuenta el Geoprocesamiento de imágenes, la metodología claramente debe tener un enfoque integral de variables que ayuden estimar superficies de cultivo con menor grado de incertidumbre.

Por esta razón una metodología que englobe diversos variables es fundamental el cual este respaldado por un documento que técnicamente muestra el proceso generado. Por ello es preponderante la generación de una guía metodológica que integre todos estos aspectos, para poder ofrecer información de superficies de cultivo con mayor exactitud para utilidad de la entidad y de la sociedad en general.

III. OBJETIVOS

3.1. Objetivo General

• Brindar una guía metodológica para la elaboración de mapas de superficie de cultivos priorizados a través de un análisis multicriterio.

3.2. Objetivos Específicos

- Mostrar la información, los procesos y criterios técnicos que se deben tomar en cuenta en la generación de mapas de superficie de cultivo.
- Brindar fichas técnicas por cultivo priorizado para llevar a cabo el análisis multicriterio.
- Brindar un documento técnico a la OAP para respaldar la información generada en la estimación de superficies de cultivo con uso de herramientas SIG.

Fuente: Presentación institucional OAP. Temática; Monitoreo de cultivos estratégicos mediante imágenes del satélite Landsat 8.

IV. METODOLOGIA DE TRABAJO

Para realizar un monitoreo de cultivos estratégicos y las áreas de producción agropecuaria, es necesario identificar las áreas de producción agrícola (superficie de cultivo), tomando en cuenta diferentes variables para ello la metodología más acertada es la aplicación de un análisis multicriterio.

Un análisis multicriterio o multiobjetivo es un conjunto de técnicas utilizadas en la toma de decisiones para evaluar una serie de alternativas, que satisfacen uno o varios objetivos (G. Montserrat, s.f).

La toma de decisiones con una evaluación multicriterio (EMC), es un proceso basado en un conjunto de conceptos, modelos y métodos para describir, evaluar, jerarquizar, elegir o rechazar alternativas, con base en una valoración expresada por intensidades de preferencia, de acuerdo con diversos criterios (Barredo, 1996).

Para la realización de la EMC, se trabajaran capas temáticas en un entorno SIG con las siguientes variables: procesamiento de imágenes el cual combina trabajo de gabinete y campo, temperatura, pendiente, elevación, suelo, tamaño de parcela, estas variables son diferentes para cada cultivo, por ello se generó fichas técnicas (Anexo N°1), para poder contar con la información de entrada que permita realzar la metodología mencionada.

El proceso general para la estimación de superficie de los cultivos se muestra en el siguiente cuadro:

Cuadro 3. Variables para la estimación de superficie de cultivo

A continuación, se describirá la metodología de trabajo para explicar cómo obtener cada variable y el análisis final de álgebra de mapas que permitirá relacionar todas las capas temáticas para obtener la capa temática final de estimación de superficie de cultivo.

4.1. Variable Uno

Procesamiento de Imágenes Satelitales

Este proceso permitirá obtener una capa temática preliminar de identificación de la superficie de cultivo, para ello se combina el procesamiento de imágenes satelitales y el trabajo de campo de puntos GPS; con ambos datos de entrada se pretende generar diferentes tipos de análisis con el objeto de generar una capa temática preliminar de identificación de superficies de cultivo, a continuación, el flujograma de este proceso:

Cuadro 4. Flujograma de la variable de procesamiento de imágenes satelitales

Fuente: Elaboración propia.

La descripción de cada proceso es la siguiente:

- DATOS DE ENTRADA

1.1. Imagen satelital

La descarga de imágenes satelitales se debe realizar de la zona de estudio tomando en cuenta que el tiempo de toma de la imagen coincida con el tiempo de monitoreo realizado en campo;

para que exista coherencia temporal. Existe una gran variedad de imágenes para este tipo de análisis, en (Anexo N°2) se cuenta con un cuadro que muestra las características de cada imagen satelital. Por otro lado, la forma de descarga y obtención de la imagen varía y está en función al tipo de satélite con el que se pretende trabajar.

1.2. Puntos GPS en campo

Para el levantamiento de información en campo la OAP cuenta con técnicos que hacen el recorrido en campo y utilizan el Formulario GPS de Levantamiento de Información (Anexo N°3). El cual está diseñado para brindar información de los cultivos priorizados observados en los monitoreo.

PROCESO

2.1. Descarga de Imágenes

Independientemente si el acceso a las imágenes satelitales sea gratuito o a través de una compra de algún ente distribuidor, se debe tomar en cuenta el sistema de coordenadas. Según la proyección geográfica; Universal Transversal de Mercator (UTM), la más utilizada en el país. Bolivia se encuentra en las zonas 19, 20 y 21. Como se visibiliza en el gráfico.

Figura N°1. Zonas de Bolivia

Fuente: Flores, H. 2015

2.2. Pre procesamiento de la Imagen

El preprocesamiento consiste en actividades destinadas a preparar la imagen satelital para los análisis posteriores. Usualmente durante el preprocesamiento se procura corregir o compensar errores sistemáticos que se hubieran detectado en los datos digitales. Otros autores especifican que el preprocesamiento es la acción de corregir las distorsiones radiométricas y geométricas de la imagen y la eliminación del ruido.

2.2.1. Radiometría

Cuando se trabaja con más de una imagen satelital de una misma zona, debería tener las mismas características de valores en cuanto a la intensidad, pero en la práctica eso no es así siempre existe una variación debido a las condiciones atmosféricas y la iluminación. Para evitar esta variación y uniformizar las imágenes se realiza la corrección radiométrica. Existen dos formas de realizar este proceso: la corrección radiométrica absoluta el cual utiliza un modelo analítico y la corrección mediante una transformación de niveles basada en el histograma (corrección radiométrica relativa). Solo se utiliza la segunda alternativa ya que para la primera la información de análisis es desconocida relativos a la orbital del satélite entre otros (Chuvieco, 1990).

Por tanto, se utiliza la transformación de niveles basado en el histograma denominado "especificación de histograma", consiste en modificar el nivel de intensidad de un pixel de la imagen a corregir mediante una transformación tal que el histograma de la imagen resultante presente un histograma similar al de la imagen de referencia. (Ambrosio, G. et al. s.f).

2.2.2. Atmosférica

La corrección atmosférica sirve para intentar eliminar el efecto de la dispersión de la radiación electromagnética originada por parte de los gases y partículas en suspensión de la atmósfera para que las variaciones sean independientes de las condiciones atmosféricas (Chuvieco, 1990).

2.2.3. Geométrica

Es el proceso mediante el cual la geometría de la imagen se hace planimetrica en este caso se vio conveniente trabajar con la proyección Universal Transversal de Mercator UTM. Trabajando con las zonas 19,20 y 21 respectivamente.

2.3. Geo procesamiento

Una vez corregidas las imágenes de trabajo se empieza con los análisis de geoprosesamiento a continuación se desarrolla cada una de ellas:

2.3.1. Análisis de Componentes Principales (ACP)

Permite eliminar el "ruido", la redundancia de información, facilita la interpretación conceptual de las imágenes resultantes (Donker & Muller, 1976).

Esta técnica estadística sintetiza un grupo amplio de variables en un conjunto más pequeño de datos sin perder una parte significativa de la información original, además incrementa la eficiencia porque reduce la dimensionalidad de los datos, otra característica es el de facilitar una primera interpretación de la imagen permitiendo identificar rasgos que aparecen en la mayoría de las bandas y los que son específicas de algún grupo de ellas (Guerrero, 2010).

Para el cálculo del componente principal en Arc.Gis 10.3. Se direccionó la imagen raster de interés de la siguiente forma:

Cuadro 5. Proceso de Componente Principales

Fuente: Elaboración propia.

2.3.2. Índice diferencial de vegetación normalizado (NDVI)

Se define como el parámetro calculado a partir de los valores de reflectancia a distintas longitudes de onda y es particularmente sensible a la cubierta vegetal (Gilabert M.A. *et al*, 1997). El utilizar este índice tiene su fundamento en el particular comportamiento radiométrico de la vegetación. Una cubierta vegetal en buen estado de salud, tiene una firma espectral que se caracteriza por el contraste entre la banda del rojo (entre 0,6 y 0,7 µm), la cual es absorbida en gran parte por las hojas, y el infrarrojo cercano (entre 0,7 y 1,1 µm.), que es reflectada en su mayoría. Esta cualidad de la vegetación permite la realización de su valoración cualitativa.

El Índice de Vegetación Diferencial Normalizado se calcula mediante la siguiente expresión:

$$NDVI = \frac{IRC - R}{IRC + R}$$

Dónde: IRC es la reflectividad en el infrarrojo cercano y R es la reflectividad en el rojo.

El rango de valores de las reflexiones espectrales se encuentra entre el 0 y el 1; ya que, tanto la reflectividad del infrarrojo cercano como la del rojo, son cocientes de la radiación reflejada sobre la radiación entrante en cada banda espectral. Por consecuencia de estos rangos de valores, el NDVI varía su valor entre -1 y 1. El NDVI posee un gran valor en términos ecológicos, ya que es un buen estimador de la fracción de la radiación fotosintéticamente activa interceptada por la vegetación (fPAR) según Monteith (1981).

En las imágenes Landsat 8, la banda 4 (0.630 – 0.680 μm) corresponde al rojo (R) y la banda 5 (0.845 – 0.885 μm) al infrarrojo (IRC), por lo tanto, para el cálculo NDVI se requiere contar con ambas bandas

Para el cálculo del NDVI trabajando con imágenes Landsat 8, se aplica la siguiente ecuación:

$$NDVI = Float \left(\frac{banda \ 5 - banda \ 4}{banda \ 5 + banda \ 4}\right)$$

Aplicando la ecuación en un entorno SIG, se tiene el siguiente cuadro:

Cuadro 6. Proceso de Índice diferencial de vegetación normalizado

En Arc. Map, caja de herramientas:	Raster Calculator Map Algebra expression Lavers and variables	- IX	
ArcToolbox	 C00100632016328,CH00_94.TF C00100632016328,CH00_95.TF Multispectral_LC00100632016328,CH00_MTL 	7 8 9 //weiling a Con 4 5 6 > > Pock 1 2 3 - <	
Map Algebra	PCCC C021005120 IA322, GMOD, BS.TUP* - 1 C60 MOSS20 IA322, GMOD, B4.TUP*) / Foot (1 C68 Output raster C: Users PFrant/Documents/WrCGIS/Defbut.gdb/NDVI	100652016325.GH00_B5.TFF*+1C80100652016325.GH00_B6.TFF*	Ingreso de fórmula para el cálculo del NDVI. Introducción de dirección de salida del raster NDVI.
		OK Cancel Environments Show Help >>	

Fuente: Elaboración propia.

El resultado es una imagen ráster que contiene valores que van desde -1 a 1 (siendo los valores más cercanos a 1 la vegetación más vigorosa).

2.3.4 Clasificación no supervisada

Este tipo de clasificación no determina ninguna prioridad para obtener las clases, es decir lo realiza en base a probabilidades, el resultado es un raster reclasificado, donde no interviene el analista. El análisis en un entorno SIG se muestra a continuación el proceso:

Cuadro 7. Proceso de Clasificación no Supervisada

2.3.3. Clasificación Supervisada

Este tipo de clasificación utiliza trabajo en gabinete y campo, trata de clasificar un patrón nuevo en la clase correcta, habiendo inicialmente diseñado un clasificador a partir de la información proveniente de un conjunto de entrenamiento, en el que en particular los ejemplares están etiquetados con la clase a la que pertenecen (Ortiz, R. 2010). En Arc Map el proceso es el siguiente:

	✓ Create Signatures – □ ×	
En Arc. Map, caja de herramientas:	Input raster bands	Introducción de raster con las bandas de interés.
ArcToolbox	×	
Multivariate	Input raster or feature sample data basincuenca Sample field (optional) Value	Introducción del raster con los datos de función como base.
	Vaue Output signature file C:\Users\VDRyT10639\AppData\Local\Esr\Desktop10.3\SpatialAnalyst\CreateS_cuencas1.GSG Compute covariance matrices (optional)	Introducción de dirección de salida del raster.
	OK Cancel Environments Show Help >>	

Cuadro 8. Proceso de Clasificación Supervisada

Cuadro 9. Proceso de Clasificación Supervisada

2.3.5 Algebra de Mapas

Es el proceso donde se va a unir todas las capas temáticas generadas, previo a ello se selecciona las posibles parcelas de cultivo y se le asigna el valor de 1 a cada pixel, de todas las capas temáticas, una vez seleccionado se realiza una multiplicación de todas las capas temáticas.

Fuente: Elaboración propia

DATOS DE SALIDA

La capa temática A, resulta del algebra de mapas, realizado del análisis descrito, es resultado será un mapa preliminar de identificación de superficie de cultivo.

5.2. Variable Dos

Temperatura

El objetivo de este proceso es discriminar las zonas que térmicamente no serían aptas para el desarrollo del cultivo, el resultado esperado es una capa temática que muestre la distribución espacial del cultivo en zonas donde fenológicamente no tenga dificultad en cuanto al desarrollo de la planta.

Cuadro 11. Flujograma de la variable de temperatura

La descripción de cada proceso es el siguiente:

DATOS DE ENTRADA

1.1. Información de la normal de temperatura promedio °C

Esta información es la base para realizar el análisis, la institución que brinda esta información es el Servicio Nacional de Meteorología e Hidrología del país (SENAMHI), el cual a través de sus estaciones meteorológicas y a lo largo del tiempo ha generado normales de temperatura para el país.

La información requerida para el proceso son las normales de temperatura promedio de todas las estaciones meteorológicas que se encuentran dentro y alrededor de la zona de estudio para la generación de las isotermas correspondientes, esta información debe contener las coordenadas geográficas de las estaciones meteorológicas para la ubicación de los datos espaciales que se desean representar.

Importante mencionar que las variables de tiempo como este caso la temperatura promedio, está ligado a fenómenos de cambio climático globales, por lo que el modelo es dinámico y debe ser actualizado anualmente.

1.2. Ficha técnica del cultivo

Se generó las fichas técnicas para los cultivos priorizados (Anexo N°1), el cual permite identificar los rangos de temperatura aptos para el desarrollo del cultivo.

PROCESO

2.1. Generación de shapefile de puntos

La información que brinda el SENAMHI es en formato Excel por estación meteorológica de las que tenga en funcionamiento, por lo que se debe generar el shapefile para tener la distribución espacial de la información, este proceso se realiza en Arc.Map de la siguiente forma:

2.2. Análisis geoespacial (Kriging Lineal)

En la representación espacial de variables climáticas tales como precipitación y temperatura, importantes en la delimitación de usos agrícolas se hace necesario el uso de métodos geoestadísticos "procesos de interpolación" de las variables requeridas (Márquez J.L, *et.al.* 2001).

Este análisis geoespacial se refiere a la aplicación de un método de interpolación, que permite generar una predicción espacial de alguna variable de interés, uno de los interpoladores más utilizados para este tipo de estudio es el kriging lineal el cual permite estimar intervalos de confianza para dicha predicción, además de que el kriging es el mejor método de estimación lineal insesgado (Bohórquez, s.f.).

Según Colmenar (2000 citado por Gallego 2002), dentro de la formulación matemática de Kriging lineal se incluyen dos restricciones básicas, en las que se limita la suma de los errores de estimación a ser cero y el cuadrado de las desviaciones a ser mínimo. La restricción establecida sobre la varianza de estimación, hace que 'Kriging' sea el mejor estimador lineal, este proceso se realiza en ArcMap de la siguiente forma:

Cuadro 13. Proceso de Análisis geoespacial (kriging lineal)

2.3. Análisis de reclasificación de temperaturas

Este análisis se refiere a tomar los datos obtenidos en el anterior proceso y con ayuda de la ficha técnica del cultivo en estudio, discriminar y seleccionar solamente los rangos de temperatura donde desarrollaría el cultivo, el proceso en Arc.Map para obtener tal resultado es el siguiente:

Cuadro 14. Proceso de Análisis de reclasificación de temperaturas.

DATOS DE SALIDA

Fuente: Elaboración propia

La capa temática B, muestra información del cultivo con relación a la restricción térmica de desarrollo del cultivo en estudio.

4.3. Variable Tres

Altitud

La altitud, estable condiciones óptimas y marginales para la distribución y crecimiento de las plantas; dependiendo la especie la altitud puede generar condiciones estresantes, marcando límites para su desarrollo (Körner & Paulsen 2004, Smith et al. 2009, Anthelme & Dangles 2012; citado por Romay A. et al. 2015). Por otro lado, los componentes bióticos y abióticos del micrositio alrededor de las plántulas arbóreas pueden aminorar o incrementar el estrés ambiental del entorno, influyendo de manera importante en la sobrevivencia o crecimiento de las plántulas. Por ejemplo, un micrositio seguro puede conducir a las especies vegetales hacia lugares más estresantes ambientalmente, porque pueden reducir el estrés ambiental o suministrar más recursos, también es importante tomas en cuenta la competencia de nutrientes que existiría con especies arbóreas con mayor capacidad de adaptación (Fowler 1988, Körner & Paulsen 2004; citado por Romay A. et al. 2015).

El objetivo de este proceso es discriminar las zonas que altitudinalmente no serían aptas para el desarrollo del cultivo Según la FAO (s.f). La altitud (altura sobre el nivel del mar) influye sobre la presión atmosférica y la temperatura en general en regiones con mayor altitud disminuye la presión y la temperatura. Para la discriminación de esta variable se utilizarán fichas técnicas de cultivo que tendrán rangos de altitud para el desarrollo del cultivo en estudio, el proceso es el siguiente:

Fuente: Elaboración propia

La descripción de cada proceso es el siguiente:

DATOS DE ENTRADA

1.1. Curvas de nivel de la zona de estudio

Esta información es la base para realizar el análisis, el ente oficial que brinda esta variable es el IGM a través de cartas topográficas y curvas de nivel en formato digital. Para trabajar este proceso se requiere un shapefile de líneas con información altitudinal de la zona de estudio.

1.2. Ficha técnica del cultivo. –

En la ficha técnica (Anexo N°1), se identifica los rangos altitudinales para el desarrollo del cultivo.

PROCESO

2.1. Generación de una Red Irregular de Triángulos (TIN)

Como se indica en el nombre es una Red de triángulos irregulares, este proceso sirve para modelar el relieve y es el proceso más utilizado para la generación de altitudes en el terreno (Pérez, L. 2012). Este análisis se realiza en Arc.Map y el proceso es el siguiente:

Cuadro 16. Proceso de generación de TIN

2.2. Generación del Modelo Digital de Elevaciones (DEM)

Un Modelo Digital de Elevaciones se define como una estructura numérica que representa la distribución espacial de la altitud de la superficie del terreno, existen diversos softwares para realizar el presente análisis, pero a continuación se muestra el proceso a realizarse en ArcMap.

Cuadro 17. Proceso de generación del DEM

2.3. Análisis de reclasificación altitudinal

Este análisis se refiere a tomar los datos obtenidos en el anterior proceso y con ayuda de la ficha técnica del cultivo, discriminar y seleccionar solamente los rangos altitudinales donde se desarrolla el cultivo, el proceso en Arc.Map es el siguiente:

Cuadro 18. Proceso de Análisis de reclasificación altitudinal

DATOS DE SALIDA

Fuente: Elaboración propia

La capa temática C, muestra información de la superficie del cultivo con relación a la restricción altitudinal, por otro lado, mencionar que el valor ponderado para cada rango de altitud es de 1 para lograr realizar el álgebra de mapas.

4.4. Variable Cuatro

Pendiente

Es importante analizar esta variable de pendiente ya que está relacionado con el efecto de la erosión hídrica. Entre los principales factores que afectan la erosión por el agua está la topografía (Quiñones, 1994: 13). Por este

motivo y además porque las condiciones de trabajo se dificultan en zonas de ladera es porque en pendiente fuertes no se siembran cultivos, por ello existe rango de pendiente para la siembra según el tipo de cultivo.

Para la discriminación de esta variable se utilizarán fichas técnicas de cultivo que tendrán rangos de pendiente, el proceso para la discriminación de esta variable es la siguiente:

Cuadro 19. Flujograma de la variable de Pendiente

Fuente: Elaboración propia

La descripción de cada proceso es el siguiente:

DATOS DE ENTRADA

1.1. Modelo Digital de Elevaciones (DEM)

Esta información se obtiene del proceso anterior del análisis de la variable altitudinal.

1.2. Ficha Técnica de cultivo

En la ficha técnica (Anexo N°1), se identifica los rangos de pendiente para la producción de los cultivos priorizados.

PROCESO

2.1. Generación de capa temática de pendiente

Existen diversos softwares para generar las pendientes de la zona de estudio en este caso se utiliza Arc.Map el proceso es el siguiente:

Cuadro 20. Proceso de generación de capa temática de pendientes.

ArcToolbox	Noo Seatante Fee, uncool Seatante Fee, uncool Seatante Fee, uncool Seatante Seatante		En la ventana se direcciona el DEM generado. En la ventana se direcciona la carpeta de salida. Se puede seleccionar si los datos se quiere en porcentaje o numérico.
	OK Cancel Environments	Show Help >>	

2.3. Análisis de reclasificación de pendientes

Este análisis se refiere a tomar los datos obtenidos en el anterior proceso y con ayuda de la ficha técnica del cultivo, discriminar y seleccionar solamente los rangos de pendiente deseados, el proceso en Arc.Map es el siguiente:

Cuadro 21. Proceso de Análisis de reclasificación de pendientes

DATOS DE SALIDA

La capa temática C, será un raster de pendientes con ponderación de 1 a los rangos de pendiente.

4.5. Variable Cinco

Suelo

Existe una gran variedad de suelos los cuales tienes diferentes propiedades físicas, químicas y biológicas, los cultivos se adaptan a los suelos de acuerdo a las condiciones favorables que este presenta para el desarrollo de la planta, es así que cada cultivo absorbe del suelo distintos macro y micronutrientes, por ello es importante identificar el tipo de suelo de la zona de estudio para poder identificar el tipo de cultivos que se desarrollarían en tales perfiles edáficos. Con esta información se debe discriminar las zonas que serían aptas por el tipo de suelo para el desarrollo de un cultivo en específico el proceso seria el siguiente:

La descripción de cada proceso es el siguiente:

DATOS DE ENTRADA

1.1. Planes de Uso de Suelos (PLUS)

La entidad oficial de brindar la información de Plan de Uso de Suelos es el Viceministerio de Tierras, a nivel Departamental o a nivel Municipal los Gobiernos Autónomos Municipales que actualizan esta información para su planificación agrícola y pecuaria entre otros rubros.

1.2. Ficha Técnica de cultivo

En la ficha técnica (Anexo N°1), se identifica el tipo de suelo apto para el desarrollo de cultivos priorizados.

PROCESO

2.1. Generación de capa temática de suelo

La generación de la capa temática de suelos se refiere solamente a delimitar la zona donde se pretende analizar los cultivos ya que la información de entrada es a nivel Departamental o Municipal, esta información se debe ponderar asignando el valor de 1 a los suelos aptos para el cultivo y 0 las zonas que no son aptas.

2.2. Análisis de reclasificación del suelo

En este proceso se debe tomar los datos obtenidos en el anterior proceso y con ayuda de la ficha técnica del cultivo, discriminar y seleccionar solamente los suelos aptos para el desarrollo del cultivo, el proceso en Arc.Map es el siguiente:

Cuadro 23. Proceso de Análisis de reclasificación de suelos.

DATO DE SALIDA

Fuente: Elaboración propia

La capa temática E, será un raster de suelos clasificado donde se visibilizará lugares aptos para el desarrollo del cultivo.

4.6. Variable seis

Tamaño de Parcela

Esta variable discrimina las superficies de terreno mínimas o sobre estimadas que podrían haberse generado en todo el proceso de Geoprocesamiento. Para ello es muy importante el monitoreo de campo y la pregunta que realizan a cada productor referente al tamaño de la superficie de terreno del cultivo, esta información permite discriminar esa variación que podría darse en datos mínimos y máximos de estimación de superficie de terreno; el proceso seria el siguiente:

Cuadro 24. Flujograma de la variable de tamaño de parcela

Fuente: Elaboración propia

La descripción de cada proceso es el siguiente:

DATOS DE ENTRADA

1.1. Capa temática de suelos

Es la capa temática generada en el anterior proceso el cual se encuentra en formato raster.

1.2. Boleta de Monitoreo de Campo

La boleta de monitoreo de campo es el instrumento principal para discriminar esta variable, ya que una de las preguntas que realizan a los agricultores es el tamaño de su extensión de cultivo en hectáreas, esta variable es la que se utiliza en este análisis.

PROCESO

2.1Cálculo de superficie en Ha

Este proceso se realiza de la siguiente forma:

2.4. Selección de superficie de interés y reclasificación de la capa temática

Este proceso se refiere a discriminar la superficie deseada y posteriormente ponderar a las superficies en una columna a parte el valor de 1 esto con el objetivo de una vez transformada la capa temática en raster cada pixel tenga el valor de 1 y pueda realizarse el análisis de algebra de mapas con los otros procesos realizados.

Cuadro 26. Proceso de Análisis de reclasificación.

DATOS DE SALIDA

La capa temática F, será un raster de suelos con las superficies de cultivos discriminadas.

8. Imagen final del cultivo

La capa temática final de superficie de cultivo se genera con la multiplicación de todas las variables generadas en los anteriores procesos, el proceso seria el siguiente:

1. DATOS DE ENTRADA	2. PROCESO	3. DATO DE SALIDA
Capa Temática A. Procesamiento de imágenes.	2.1. Aplicación de algebra de mapas	
Tempaeratura.	Raster Calculator – – X	
Capa Temática C. Altitud.	Mos Apple segression Conditional A Upges ad variables 0 0 0 Incorrent as 7 8 9 7 8 7 8 9 7 8	
Capa Temática D. Pendiente.	Version 2, per unit 0 + () + () - + () - + () - + () - + () - + () - + () - + () - + 1 >	superficie cultivo
Capa Temática E. Suelo	Output raster C ("LiteryPGRyT10509Pocumetts/krGISDefault1.pdb/yrateroak3	Capatemática Final Rater con las superficies de cultivo identificadas de las
Capa Temática F. Restricción tamaño de la parcela.	OK Cancel Environmenta Show help >>	cuales se pude obtener las superficies en Ha.

Cuadro 27. Proceso de Análisis de reclasificación.

El proceso anterior fue desarrollado en Arc.Map con herramientas de ArcToolBox; el resultado final es la identificación de superficies de cultivo tomando en cuenta todas las variables descritas, este proceso brinda información más confiable y con menor probabilidad de sobreestimación de extensiones de superficie.

V. CONCLUSIONES

- Se generó la guía de metodología multicriterio para la estimación de superficies de cultivo con bases técnicas respaldadas en cada proceso, con el objeto de contar con una herramienta coherente y técnicamente fundamentada.
- La metodología multicriterio permite la incorporación de nuevas variables de análisis para tener mayor exactitud en el cálculo de superficie de cultivo. Por tanto, es una metodología flexible que se amolda al tipo de información de entrada que se tenga para el inicio de los procesos de cálculo.
- El presente manual incluye "fichas técnicas de cultivo", para el análisis de variables de entrada, instrumento útil que en la medida que se vaya detallando la información ya sea por región, tipo de pisos ecológicos, entre otros, el cálculo será más exacto.
- Con este manual la OAP cuenta con un respaldo técnico de la información que se vaya a generar de estimación de superficies de cultivo en un entorno SIG.
- La guía metodología multicriterio será un instrumento importante para los técnicos SIG de la OAP porque permitirá: visibilizar los procesos de análisis, las variables de trabajo, uniformizar el trabajo, efectivizar el tiempo y garantizar la calidad del producto final.

VI. RECOMENDACIONES

- En caso de aprobación de la metodología por inmediatos superiores. Se recomienda la unidad de informática y soporte tecnológico socialice a funcionarios de la OAP que trabajan en el monitoreo de cultivos la guía metodológica; con la finalidad de mostrar la importancia de las variables que se levantan en campo y lograr sinergias que mejoren el trabajo de forma integral, por otro lado otros técnicos de la OAP del área agrícola validen las "fichas técnicos de cultivo" instrumento fundamental para la restricción de superficies de cultivos deseado o aporten mejorías en dicho instrumento.
- Con esta guía se visibiliza la importancia del trabajo de levantamiento de información en campo, información fundamental que coadyuva al logro del resultado final de estimación superficie de cultivo. Por ello es importante se considere la pertinencia de contar con procesos metodológicos de esta etapa: identificando: etapas, responsables y tiempos de ejecución del trabajo de campo y gabinete que permitan establecer procesos más eficientes.

VII. BIBLIOGRAFIA

- 1. Ambrosio, G. Gonzales, J. Arévalo V. s.f. Documento: Corrección radiométrica y geométrica de imágenes para la detección de cambios en una serie temporal. Universidad de Málaga España. Documento en línea. Link. http://mapir.isa.uma.es/varevalo/drafts/ambrosio2002crg.pdf
- 2. Barredo C., J. I. 1996. Sistema de información geográfica y evaluación multicriterio en la ordenación del territorio.

 Editorial
 Ra-Ma.
 Madrid,
 España.
 Link.

 http://www.scielo.org.mx/scielo.php?script=sci nlinks&ref=7293999&pid=S0187-57792010000200002&lng=es
- 3. Bohórquez, sf. Documento: Generalidades sobre el Kriging. Universidad Nacional de Colombia. Formato PDF. Link. http://www.docentes.unal.edu.co/mpbohorquezc/docs/clase%20junio%2012%20kriging.pdf
- 4. Donker H,W. Mulder N,J. 1976- Analys Isof MSS Digital Imagery With The Aid Of Principal Component Transform. ISP Commission VII.
- 5. Chuvieco, 1990. Documento: Fundamentos de Teledetección Espacial. Madrid –España. Documento en línea. Link. <u>http://files.especializacion-tig.webnode.com/200001110-8750e88486/FUNDAMENTOS-DE-TELEDETECCION-EMILIO-CHUVIECO.pdf</u>
- 6. FAO, s.f. Documento: Ecología y enseñanza rural. Dirección de Recursos Forestales. Documento en línea. Link. http://www.fao.org/docrep/006/W1309S/w1309s09.htm#TopOfPage
- 7. Flores, H. 2015. Documento: Proyecciones cartográficas de uso en Bolivia. Documento en línea. Link. <u>https://proyeccionescartograficasenbolivia.wordpress.com/2015/08/06/proyecciones-cartograficas-de-uso-en-bolivia/</u>
- Gallego, A; 2002. Determinación de riesgos de erosión en la comarca olivarera de "Sierra Magina" mediante técnicas SIG y teledetección (en línea). Santander, ES. XIV Congreso Internacional de Ingeniería Grafica. Documento en línea. Link. <u>http://departamentos.unican.es/digteg/ingegraf/cd/ponencias/77.pdff</u>
- Gilabert M.A, Gonzales-Piqueras J. García-Haro. 1997. Documento Acerca de los Índices de Vegetación. Universidad de Valencia, departamento de Termodinámica. Documento en Línea. Link. <u>http://www.aet.org.es/revistas/revista8/AET8_4.pdf</u>
- 10. Guerrero José, 2010. Análisis de Componentes Principales en Teledetección: Autovalores y autovectores. Link. <u>https://joseguerreroa.wordpress.com/2010/10/11/analisis-de-componentes-principales-en-teledeteccion-autovalores-y-autovectores/</u>
- 11. Márquez J.L. Sanchez. J. Andressen R. 2001. Documento: Comparación De Varios Métodos Para La Representación Cartográfica De Información Climática En Zonas Altas Del Estado Lara. Formato PDF. Link. <u>http://www.ucla.edu.ve/bioagro/Rev13(1)/6.%20Comparaci%C3%B3n%20de%20varios.pdf</u>
- 12. Montserrat G, 2008. Documento: Integración de técnicas de evaluación multicriterio y SIG. Universidad de Alcalá. España, Departamento de Geografía. Link. <u>https://portal.uah.es/portal/page/portal/GP_EPD/PG-MA-ASIG/PG-ASIG-200388/TAB42351/emc_08.pdf</u>
- 13. Monteith, J.L. 1981. Documento: Variación climática y crecimiento de cultivos. Revista Trimestral de la Real Sociedad Meteorológica 107:749-774.

- 14.Ortiz, A. 2010. Documento: Clasificación Supervisada. Universidad de las Illes Balears, Departamento de Ciencias Matemáticas e Informáticas. Documento en Línea. Link: <u>http://dmi.uib.es/aortiz/IEA10529/10529-tema2.pdf</u>
- 15.Pérez. L. 2012. Documento: Redes de Triángulos Irregulares (TIN). Documento en línea. Link. <u>http://inisig.com/redes-de-triangulos-irregulares-tin/</u>
- 16.Quiñones, JA. 1994. Manual práctico de manejo de suelos en ladera. Tegucigalpa, HN. s.e 16 p.
- 17.Romay A, Rojas G. Lovera P. 2015. Documento: Efecto de la altitud y el micrositio sobre plántulas reforestadas de Polylepis lanata (Rosaceae) en el noroeste de Cochabamba, Bolivia: implicaciones para su restauración ecológica. Documento en línea. Link. <u>http://www.scielo.org.bo/scielo.php?script=sci arttext&pid=S1605-25282015000100002</u>

ANEXOS

Anexo 1. Descripción de las características de los cultivos para el análisis en imágenes satelitales.

CEBOLLA – Allium sepa L.

Altitud: la producción es óptima en alturas mayores de los 900 msnm.

Temperatura: 13°C y 14°C con Máx. de 30°C y Mín. de 7°C. **Brillo solar:** Días cortos 0 a 12 horas luz.

Suelos: Deben ser sueltos y ricos en materia orgánica con un pH de 5,5 a 7,5.

Variedades: Variedad cinteña, la isleña amarilla, pollera colorada, en la zona de Quivi quivi, cerca debe Betanzos, en Potosí se hacen enormes almácigos de cebolla blanca.

Rendimiento: 10.000 – 20.000 kilogramos / Hectárea.

Ciclo vegetativo: 110 a 140 días desde almacigo hasta la cosecha, dependiendo del clima y la variedad.

Sistema de siembra: Hacer almácigos cuidando de mantener la humedad necesaria, la distancia entre surcos de 60 centímetros dependiendo de la variedad y una distancia entre planta sobre el surco de 5 a 10 cm.

Plagas: Principalmente piojitos, trips, algunas petitas o loritos, gusanos cortadores y agrotis.

Épocas de siembra: En numerosas regiones de Bolivia se siembra todo el año, se prefieren las siembras de primavera donde el clima no es muy frío, en los llanos en el invierno.

(http://www.angelfire.com/ia2/ingenieriaagricola/cebolla.htm)

ARROZ-Oriza sativa L.

*Altitud:*el arroz se cultiva desde el nivel del mar hasta los 2500 msnm

Temperatura: 13°C y 14°C con Máx. de 30°C y Mín. de 7 °C. **Brillo solar:** 10 horas luz.

Distancia y densidad de siembra: distancia entre surcos de 16 a 20 cm

Requerimiento de lluvias: 900 - 1.500 mm anuales.

Suelos: Diferentes tipos de suelos preferentemente de textura pesada, planos, y buena capacidad de retener agua, los suelos arenosos son muy pobres para este cultivo.

Rendimiento: 2.300 kg / Hectárea.

Cosecha: A los 100 – 150 días después de la siembra.

Época de siembra: Depende mucho de la variedad y la zona generalmente se realiza la siembra en octubre y diciembre.

Sistema de siembra: Con sembradora graduada para chorro continuo, con distancia entre los surcos de 16 a 20 centímetros. Cuando se utiliza herbicidas. La distancia entre surcos aumentará a 30 – 40 centímetros

Plagas: Barrenadores, comedores y hojas y chupadores, la petilla y gusano militar.

GIRASOL – Helianthus annus

Altitud: 0 – 1.500 msnm.

Temperatura: 12 - 30 °C.

Brillo solar: Durante la fase reproductiva el fotoperiodo deja de tener influencia y comienza a tener importancia la intensidad y la calidad de la luz, por tanto un sombreo en plantas jóvenes produce un alargamiento del tallo y reduce la superficie foliar.

Distancia de siembra: Aproximadamente de 60 - 80 centimetros entre surco y 30 – 40 entre planta.

Suelos: Los mejores suelos son los suelos franco arenosos a franco arcillosos profundos, con buen contenido de materia orgánica y buen drenaje.

Clima: La resistencia del girasol a las bajas temperaturas, heladas, sequía y daños causados por enfermedades he insectos es superior a la del maíz.

Variedades: Variedades Taiwan 1 y Taiwan 2, existen otras variedades que se producen en Cochabamba, Santa Cruz, Tarija, Betanzos y Caiza de Potosí.

Población por hectárea: 40.000 plantas por hectárea.

Ciclo Vegetativo: De 85 a 100 días un poco más en lugares fríos.

Cosecha: A los 100 – 150 días después de la siembra.

Plagas: Gusano cortado, agrotis, prodenia, gusano pegador de hojas, hormigas, etc. *Enfermedades:*

PAPA – Solamun tuberosum

Altitud: 460 – 3.000 msnm.

Distancia de siembra: Distancia entre hileras 65 – 80 centímetros, distancia entre plantas 20 – 35 centímetros.

Requerimiento de Iluvia: de 400 a 1000 mm anuales. **Suelos:** Porosos, sueltos, bien drenados y aireados, con gran contenido de materia orgánica.

Rendimiento: 5000 a 15000 kilogramos / Hectárea. Se ha llegado bajo riego en Potosí a 30000 kilogramos por hectárea.

Cosecha: A los 100 – 150 días después de la siembra.

Plagas: Gusano blanco, gorgojo de la papa, polilla de la papa

Ciclo vegetativo: 90 días en zonas bajas y templadas y calurosas 120 a 150 días en zonas altas y frías, dependiendo de la variedad y si el cultivo está bajo riego o no.

Época de siembra: En el Altiplano des de agosto hasta noviembre. En los Valles desde Julio hasta noviembre. En los llanos al finalizar la época de lluvia.

Enfermedades: Mucho control en caso de presentarse phitphtora infestans

QUINUA – Chenopodium quinoa Altitud: 2 000 a 3 400 msnm.

Temperatura: La quinua produce bien en áreas cuya temperatura oscila entre 9° a 16° C, pudiendo soportar heladas de – 5° C. La presencia de veranillos prolongados, con altas temperaturas 104 diurnas forza a la formación de la panoja y su maduración, lo que se traduce en bajos rendimientos. (Fuente: http://www.fao.org).

Precipitación: las precipitaciones anuales de 600 a 2600 mm son las más apropiadas para el cultivo de la quinua.

Brillo solar: 10 horas luz.

Distancia y densidad de siembra: Aproximadamente 1.500.000 Plantas / Hectárea, siembra al voleo.

Pendiente: igual 0 menor a 20 porciento

Suelos: La quinua prospera bien en zonas cuya altitud se encuentra en una franja que va desde los 2 200 a 3 000 metros sobre el nivel del mar, con suelos franco limosos o franco arcillosos, pH de 6.3 – 7.3, y buen drenaje. (Fuente: http://www.fao.org). Suelos salinos o alcalinos zonas con heladas.

Sistema de siembra: Al voleo o en líneas. En líneas distancia entre hileras 40 cm y distancia entre plantas 30 cm.

Rendimiento: 12 – 16 quintales / Hectárea, decir de 550 a 750 kilogramos por hectárea.

Cosecha: A los 100 – 150 días después de la siembra.

Época de siembra: Varía de acuerdo a la zona, pero generalmente se efectúa en octubre y noviembre.

Altitud: 500 - 1500 msnm.

Temperatura: 18 – 32 °C. **Brillo solar:** 12 horas luz.

Distancia y densidad de siembra: Distancia entre plantas 10 centímetros y distancia entre surcos de 40 – 100 centímetros.

Variedades: E-58 Dekalb, BR64 Delkalb, NK – 300 Northruy King, NK – 266, etc.

Requerimiento de lluvia: Precipitación óptima 400 -550 mm, precipitación conveniente 350 mm y precipitación mínima 250 mm.

Rendimiento: 5 - 6 Toneladas / Hectárea.

Suelo: Suelo con buena fertilidad con un pH 6.2 a 7.8.

Ciclo vegetativo: de 90 a 100 días.

Plagas: Principalmente son: el gusano cogollero, barrenadores, áfidos, su control es parecido al cultivo de maíz.

Enfermedades: El sorgo es susceptible a muchas enfermedades de tipo fungoso y bacteriano. **Rendimiento:** 4000 kilogramos por hectárea.

Temperatura: $30 - 42 \degree$ C. **Brillo solar:** 10 horas luz. **Distancia y densidad de siembra**: Aproximadamente 1.500.000 Plantas / Hectárea, siembra al voleo. **Variedades:** Orizicas y cicas. **Rendimiento:** 5 - 6 Toneladas / Hectárea. **Suelos:** Terrenos de fertilidad mediana, de textura franco arenosa, franco – limosa y que tengan drenaje adecuado. **Ciclo Vegetativo:** de 120 – 150 según variedad. **Cosecha:** A los 100 – 150 días después de la siembra.

Épocas de siembras: principalmente en verano las primeras fehas del mes de noviembre hast afines de diciembre dependiendo d la variedad, de las condiciones de temperatura, humedad del suelo, etc. También se puede sembrar en el invierno, pero en este caso la soya es afectada por que el día es más corto, menor temperatura y menor humedad. Pero ello disminuye la planta de tamaño y deberá aumentarse la población por hectárea, en invierno se siembra en julio.

Rendimiento: Promedios generales dan 1,9 toneladas/hectáreas.

TOMATE - Lycopersicum sculentum Mill.

Altitud: 200 - 3500 msnm.

Temperatura: 13 - 24 °C. Brillo solar: 15 horas luz. Distancia de siembra: Distancia entre hileras 1.50 – 1.80 metros y distancia entre plantas 30 – 50 centímetros Variedades: Existen variedades que pueden ser tardías y tempranas. Rendimiento: varían de 5.000 – 12.000 kilogramos por hectárea. Cosecha: A los 70 - 100 días después de la siembra. Ciclo vegetativo: 70 días para tomates de consumo en fresco y de

Ciclo vegetativo: 70 días para tomates de consumo en fresco y de 70 -90 a 120 días para los de uso industrial.

Suelos: Franco – arenosos con bastante materia orgánica, francos y arcillosos bien estrcututados y con buen drenaje.

Plagas: Gusano cortadores, Agrotis, gusanos minadores de las hojas chinche verde hediondo, afidos, barrenadores del tallo, acaros.

Enfermedades: Hongos varios Rhizoctonia – alternaría – phitophtora infestans.

T R I G O – Triticum sativum

Altitud: 500 - 3500 msnm.

Temperatura: 18 - 25 °C.

Brillo solar: 12 horas luz.

Distancia siembra: Aproximadamente 1.500.000 Plantas / Hectárea, siembra al voleo.

Requerimiento de lluvias: Este cultivo es a secano. Dependiendo de la altura geográfica en que se encuentra el cultivo en requirimiento de las lluvias varía entre 200 – 600 mm por año. **Variedades:** Algunas de las tradicionales: candeal Manitoba, Atoj

chupa, australiano, jaral, chinoli 70, saguayo.

Rendimiento: de 500 - 1500 / Hectárea. **Cosecha:** A los 100 – 150 días después de la siembra. **Plagas:** pulgón verde, el gusano militar, barrenador mayor y menor, polillas. **Enfermedades:** Roya de tallo, roya del tallo, polvillo negro, punta negra.

CAÑA DE AZUCAR - Saccharum officinarum

Altitud: 500 – 3.000 msnm.

Temperatura: para la germinación entre 32 °C y 38 °C, para el macollamiento 32 °C y para el crecimiento 27 °C.

Brillo Solar: A mayor radiación solar, mayor será la eficiencia de la fotosíntesis y en consecuencia mayor será también la producción y la acumulación de azúcares.

Requerimiento de lluvias: 1.000 mm anuales, bien distribuidos, con una época seca para efectuar la zafra o cosecha.

Distancia y densidad de siembra: 1.20 metros.

Variedades: Orizicas y cicas.

Rendimiento: 35 - 120 Toneladas / Hectárea.

Cosecha: A los 100 – 150 días después de la siembra.

Suelo: Franco – arenoso, franco arenoso limoso

Plagas: Talador de caña o barrenador (*Diatraea sp.,*), Barrenador menor (*Elasmopalpul lignoselus*), Picudo (*Metasistus*), Salivazo (*Mehanaroa expectabilis*).

Enfermedades: Mancha ojival, mancha anular, mal de la escalera, muermo rojo, raquitismo de socas pueden deberse a hongos o a deficiencias nutricionales.

ZANAHORIA - Daucus carota L.

Altitud: 200 - 3500 msnm.

Temperatura: 15 - 30°C. Brillo solar: 13 horas luz.

Distancia de siembra: Aproximadamente distancia entre hileras 70 – 80 centimetros y la distancia entre plantas.

Suelos: Suelos profundos, sueltos con gran contenido de materia organica y con un pH de 6 a 6.5.

Ciclo vegetativo: De 80 – 120 días.

Rendimiento: 10.000 - 15.000 kilogramos/ Hectárea.

Cosecha: A los 100 – 150 días después de la siembra.

Plagas: gusanos cortadores, acaros rojos, chinches y otros insectos.

Enfermedades: Alternaria ssp. Selerotium rolfssi Saea, nematodos.

MAÍZ - Zea mays

Altitud: 500 - 3.000 msnm.

Temperatura: para la germinación entre 32 °C y 38 °C, para el macollamiento 32 °C y para el crecimiento 27 °C.

Brillo Solar: A mayor radiación solar, mayor será la eficiencia de la fotosíntesis y en consecuencia mayor será también la producción y la acumulación de azúcares.

Requerimiento de lluvias: varían según la región del país 500 mmy 1.500 mm.

Distancia y densidad de siembra: 1.20 metros.

Variedades: Orizicas y cicas.

Rendimiento: 35 - 120 Toneladas / Hectárea.

Cosecha: A los 100 – 150 días después de la siembra.

Suelo: Aunque se puedan aprovechar suelos de toda clase, para mejores rendimientos se recomienda, suelos francos y ricos en materia orgánica, con buen drenaje.

Plagas: Gusano cogollero, barrenador de tallo.

Anexo 2.1. Descripción general de las plataformas para la descarga de imagen

RADAR	ΤΙΡΟ	BANDA	RESOLUCIÓN	COBERTURA	FRECUENCIA		
Almarz - 1	SAR	S	15 m	40km	?		
RadarSat	SAR	С	10 - 100 m	45 - 500 km	3 -24 días		
Mahar	VIS	1	2.5 km	Distco terrestre	30 mints		
(1977)	MIR/WVA	2	5 km	Distco terrestre	30 mints		
(1977) TI		3	3 5 km Distco terrestre				
		1	1km	Distco terrestre	30 mints		
		2	4 km	Distco terrestre	30 mints		
	IMAGER	3	8 km Distco terrestre		30 mints		
GOE3 (1975)		4	4 km	Distco terrestre	30 mints		
		5	4 km	Distco terrestre	30 mints		
	SOUNDER	19 bandas	??	Distco terrestre	30 mints		
		1	1.09 km	2600 km	12 horas		
NOAA (1972)		2	1.09 km	2600 km	12 horas		
		3A	1.09 km	2600 km	12 horas		
NOAA (1972)	AVIIII	3B	1.09 km	2600 km	12 horas		
		4	1.09 km	2600 km	12 horas		
		5	1.09 km	2600 km	12 horas		
NIMBUS (1964)	CZCS	6 bandas 825 m		1566 km	17 días		
	VTIR	4 bandas	2700 m	1500 km	2 días		
1996)	MESSR 1 Y 2	4 bandas	50 m	100 a 200 km	17 días		
1550)	MSR	2 bandas	3200 m	317 km	??		
		VIS - IRC	0.56/2.7 km	3000 km	6 horas		
	OLS	IRT	2.7 km	3000 km	6 horas		
DMSP	010	Photo Multiplier Tube (PMT)	??	3000 km	??		
	SSM/I	7 bandas	??	??	??		
	SSM/T-2	5 bandas	48 km	1500 km	??		
LANDSAT 1 -2	RBV	3 bandas (1,2,3)	80 m	185 km	18 días		
(1972 - 1978) (1975 - 1982)	MSS	4 bandas (4,5,6,7)	80 m	185 km	18 días		
	RBV	1 banda	80 m	185 km	18 días		
LANDSAT 3	MSS	4 bandas y 1 termica	80 m	185 km	18 días		
LANDSAT 4 - 5	ТМ	7 bandas	30 m	185 km	16 días		
(1982 - 1987)(1984 - 2001)	MSS	4 bandas	75 m	185 km	16 días		
LANDSAT 6 (1993 - se perdió en el lanzamiento)	ETM	6 bandas 1 thermal y 1 pancromatica	30 m	185 km	16 días		

RADAR	ΤΙΡΟ	BANDA	RESOLUCIÓN	COBERTURA	FRECUENCIA	
		6 bandas 1				
LANDSTA 7		thermal y 1				
(1999)	ETM+	pancromatica	30 m	185 km	16 días	
LANDSAT 8						
IRS 1 A &B	LISS - I	4 bandas	72.5 m	148 km	22 días	
(1988 - 1992)						
(1991)	LISS - II	4 bandas	36.5 m	74 km	22 días	
IRS - 1C - D	Pan	1	5.8 m	70 km	24 días	
(1995)						
(1997)	LISS - III	4 bandas	23 m	142 km	24 días	
JERS-1 (1992 -	OPS	8 bandas	18 m	75 km	44 días	
1998)	SAR	L - Band	18 m	15 km	44 días	
SPOT 1 - 3						
(1986)						
(1990)						
(1993)	HRV	3 bandas y 1 PAN	20 m	60 km	5 - 26 días	
SPOT 4 (1998)	HRVIR	3 bandas y 1 PAN	2 m	60 km	5 - 26 días	
	VEGETATION	4 Bandas	1 km	~2200 km	~ 1 día	
Orb View - 2						
(1997)	Sea WiFs	8 bandas	1.1 km	2800 km	1 día	
Orb View - 3	Pan	1 banda	1 m	8 km	< 3 días	
(1991 -2000)	Multi	4 bandas	4 m	8 km	< 3 días	
ERS - 1 (1991 -						
2000)	ATSR	4 bandas (1,2,3,4)	1 km	500 km	3 a 168 días	
	ATSR	3 bandas (5,6,7)	1 km	500 km	3 a 168 días	
		SAR Image Mode	30 m	10 km	16 - 35 días	
ERS - 2	ΔΜΙ	SAR Wave Mode	10 m	5 km	16 - 35 días	
(1995)	,	Wind				
		Scatterometer	500m	500 km	16 - 35 días	
	RA	K - band	0.1 m	1.3°	??	
IKONOS	Pan	1 banda	1 m	11 km	3 días	
(1999)	Multi	4 bandas	4 m	11 km	3 días	
TERRA EOS AM						
- 1	ASTER	14 bandas	15 - 90 m	60 km	<16 días	
	CERES	3 bandas	20 km	variable	1 día	
TERRA	MISR	4 bandas	275 - 250 m	360 km	2 - 9 días	
(1998 -)			250 m (1 - 2)			
EOS AM - 1			500 m (3 - 7) 1			
	MODIS	36 bandas	km (8 - 36)	2330 km	1 - 2 días	
	MOPITT	3 bandas	22 km	640 km	4 - 5 días	
	CÁMARA TK -					
SPIN - 2	350	1 banda	10 m	200 km		
	CÁMARA KVR					
	- 1000	1 banda	2 m	160 km	??	

Anexo 3.

FORMULARIO GPS LEVANTAMIENTO DE INFORMACION DE CAMPO DURANTE EL TRAYECTO (CAMINO)

	Nombr	e Encues	tador:			Ν	V° Brigada: Fecha:								
Ī	Departa	mento:			Provincia: Municipio:										
-															
N°		CODIGO DE CULTIVO OBSERVADO IZQUIERDA	PUNTO - GPS	CODIGO DE CULTIVO OBSERVADO DERECHA	ORIGEN DE RUTEO	DESTINO DE RUTEO	N°	CODIGO DE CULTIVO OBSERVADO IZQUIERDA	PUNTO - GPS	CODIGO DE CULTIVO OBSERVADO DERECHA	ORIGEN DE RUTEO	DESTINO DE RUTEO	OBSERVACIONES		
1							26								
2							27								
3							28								
4							29								
5							30								
6							31								
7							32								
8							33								
9							34								
10							35								
11							36								
12							37								
13							38								
14							39								
15							40								
16							41								
17							42								
18							43								
19							44								

CODIGO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
CULTIVO	Arroz con cáscara	Cebada en grano	Maíz en grano	Quinua	Sorgo en grano	Trigo	Сасао	Café	Banano	Durazno	Mandarina	Naranja	Piña	Plátano	Uva	Ajo	Arveja	Cebolla
CODIGO	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
CULTIVO	Frijol/poroto	Haba	Maíz choclo	Tomate	Zanahoria	Algodón	Caña de Azúcar	Girasol	Maní	Sésamo	Soya	Рара	Yuca	Alfalfa	Cebada berza	Forraje	Otro (D	escribir)